The expression of a bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana.
نویسندگان
چکیده
A possible strategy to control plant pathogens is the improvement of natural plant defense mechanisms against the tools that pathogens commonly use to penetrate and colonize the host tissue. One of these mechanisms is represented by the host plant's ability to inhibit the pathogen's capacity to degrade plant cell wall polysaccharides. Polygalacturonase-inhibiting proteins (PGIP) are plant defense cell wall glycoproteins that inhibit the activity of fungal endopolygalacturonases (endo-PGs). To assess the effectiveness of these proteins in protecting wheat from fungal pathogens, we produced a number of transgenic wheat lines expressing a bean PGIP (PvPGIP2) having a wide spectrum of specificities against fungal PGs. Three independent transgenic lines were characterized in detail, including determination of the levels of PvPGIP2 accumulation and its subcellular localization and inhibitory activity. Results show that the transgene-encoded protein is correctly secreted into the apoplast, maintains its characteristic recognition specificities, and endows the transgenic wheat with new PG recognition capabilities. As a consequence, transgenic wheat tissue showed increased resistance to digestion by the PG of Fusarium moniliforme. These new properties also were confirmed at the plant level during interactions with the fungal pathogen Bipolaris sorokiniana. All three lines showed significant reductions in symptom progression (46 to 50%) through the leaves following infection with this pathogen. Our results illustrate the feasibility of improving wheat's defenses against pathogens by expression of proteins with new capabilities to counteract those produced by the pathogens.
منابع مشابه
Durum wheat improvement against fungal pathogens by using protein inhibitors of cell wall degrading enzymes
We report the use of three glycosidase inhibitors, the bean polygalacturonase inhibiting protein 2 (PvPGIP2), the kiwi pectin methyl esterase inhibitor (AcPMEI), and the Triticum aestivum xylanase inhibitor III (TAXI-III), to control leaf blotch and Fusarium Head Blight (FHB) symptoms caused by the fungal pathogens Bipolaris sorokiniana and Fusarium graminearum. We produced transgenic durum whe...
متن کاملmlo5, a resistance gene effective against a biotrophic pathogen (Blumeria graminis fsp. hordei) confers enhanced susceptibility of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus)
The barley resistance gene mlo5 determines race non-specific resistance to the biotrophic powdery mildew pathogen Blumeria graminis f.sp. hordei. On the other hand, we have shown that barley lines that contain the mlo5 gene display enhanced susceptibility to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxic culture filtrate (Kumar et al. 2001). Enhan...
متن کاملExpression Pattern of the Synthetic Pathogen-Inducible Promoter (SynP-FF) in the Transgenic Canola in Response to Sclerotinia sclerotiorum
Sclerotinia sclerotiorum is a phytopathogenic fungus which causes serious yield losses in canola. A pathogen inducible-promoter can facilitate the production of Sclerotinia-resistant transgenic canola plants. Inthis study, the “gain of function approach” was adopted for the construction of a pathogen-inducible promoter.The synthetic promoter technique was used, which involved the in...
متن کاملA gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes
We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP) protects tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expre...
متن کاملHeterologous Expression of the Secale cereal Thaumatin-Like Protein in Transgenic Canola Plants Enhances Resistance to Stem Rot Disease
Canola (Brassica napus L.) is an important oilseed crop. A serious problem in cultivation of this crop andyield loss, are due to fungal disease stem rot caused by Sclerotinia sclerotiorum. The pathogenesis-related(PR) proteins have the potential for enhancing resistance against fungal pathogen. Thaumatin-like proteins(TLPs) have been shown to have antifungal activity on variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2008